Changing Physics Education in Cambodia: Beyond the Workshop

Last week saw the organisation of a workshop on physics education for teacher trainers in Cambodia at the regional teacher training centre in Kandal province.  All Cambodian physics teacher trainers were present, what makes around 20 people.  The workshop lasted 5 days.   Each day we discussed a different part from the curriculum.  There were days we focused on sound, mechanics, pressure, optics and electricity and magnetism.  The last day participants collaboratively made a lesson plan using materials they’d learned.   There was a strong emphasis on low-cost experiments, but also attention for simulations and animations and student-centred approaches.  

The concept underlying the workshop – and actually the whole programme – is the TPACK concept (Mishra and Koehler,2006; Koehler and Mishra, 2007; Abbitt, 2011), an extension of Shulman’s idea of pedagogical content knowledge.  This is knowledge of pedagogy that is applicable to the teaching of specific content.  TPACK extends this idea with technologies.  The core idea of TPACK is that the use of technologies in education – and in Cambodia analogous technologies such as experiments, posters or cards play a much larger role than digital technologies – should be considered in relation to content and pedagogy.  Just using an experiment or an animation just for the sake of it, without thinking about how it will make your lesson better is not useful. This may seem obvious but many interventions seem to do just this, introducing certain technologies (blogging, wikis…) or pedagogies (concept mapping, learner-centred methodologies…) without detailed consideration of the curriculum content teachers actually have to cover.

 

The workshop is the result of three years of preparatory work with a wonderful team of teachers and teacher trainers from the college in Kandal.  Since 2008 we’ve worked with them to select materials and activities for those curriculum topics they found most challenging, try them out in their lessons, develop accessible manuals and short experiment videos (See for example this experiment video on toilet rolls and pressure) and learn to facilitate the activities themselves. 

Manuals have been officially approved by the Cambodian Ministry of Education, an important milestone in Cambodia, as it means that they can be distributed and endorsed nation-wide.  Although we do hope that these manuals by themselves are inviting, an official stamp of approval is likely to act as an extra stimulation.  It’s great to see teacher trainers themselves facilitate the workshop without much involvement of us.  Above all, they enjoy it as well to explain all these experiments and activities to their colleagues as well.

The downside of involving all stakeholders is a very long development cycle.  Getting from a first selection of content until the final, approved product has taken us several years.   Having a first edition published sooner would have enabled us to envisage a second edition within the programme lifetime.  

However, our objective is not to organize great workshops, but to improve science teaching.   Whether our workshops will have a strong effect on the ground remains to be seen.  There are quite a few hurdles between a good workshop and improved learning by grade 7-9 pupils.  Teacher trainers may feel insufficiently comfortable with the materials to use them, support from college management may lack, an overloaded curriculum and recalling-based assessment may favour rote learning.  Student teachers may misunderstand techniques, fail to see any benefits or be discouraged by their school environment.

Targeting teacher trainers has been a deliberate decision.  As they teach future teachers the potential impact is very high.  However, the adopted cascading strategy bears the risk of a watering down the content.    Measuring impact is notoriously difficult, perhaps even more so in Asia, where stated preference methods are prone to response and cultural bias.

Despite continuous M&E efforts we don’t have a clear insight yet into the impact of our activities at teacher training level on the pupils.  The main reasons are the fact that measuring impact is time intensive, that an observable impact may take time to manifest and that a clear impact of the programme within the messy complexity of teaching and learning in a crowded donor landscape is hard to distinguish.
References
Abbitt, J.T. (2011) ‘Measuring Technological Pedagogical Content Knowledge in Preservice Teacher Education: A Review of Current Methods and Instruments’, Journal of Research on Technology in Education, 43(4).
Koehler, Matthew J and Mishra, Punya (2005) ‘Teachers learning technology by design’, Journal of Computing in Teacher Education, 21(3), pp. 94–102.
Mishra, Punya and Koehler, Matthew J. (2006) ‘Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge’, Teachers College Record, 108(6), pp. 1017–1054.

One comment on “Changing Physics Education in Cambodia: Beyond the Workshop

  1. […] PCK seems most useful to me as a theoretical framework to underpin sensible professional development. To be discussed in a next […]

Leave a comment